Archival of Digital Assets.

John Burns, Archive Analytics

Summary:

We discuss the principles of archiving, best practice in both preserving the
raw bits and the utility of those bits, and assert that bit-level and functional
archiving should not be treated the same way in terms of technology,
organizational processes or urgency. We include a set of key questions to
ask when considering an archival system.

Introduction.

Archiving is a purposeful activity for preserving the assets of an organization,
with the explicit intention that they be useful for some defined uses in the
future. It is distinct from backup, which is primarily there to protect against
mishaps and is intended to recover ‘lost’ files for a relatively short period. The
intention of archives is that archive assets remain “usable”, for a potentially
indefinite period, and for any of a variety of reasons, including legal, for re-use,
or for some other considered reason.

An archival system needs to recognize that that there are two distinct processes
going on - with very different modes of operation. On the one hand there is the
ongoing bit preservation processes that ensure that the deposited assets can be
returned, with provable guarantees as to their integrity. On the other hand
there is a much broader and tolerant set of processes that are intended to
guarantee the content can be used ... i.e. that the functionality of the bag of bits
will be preserved, and adapted as future generations of users call on it.

The bit-preservation layer is the core, and has simple, clearly defined
capabilities, but in an operational archive there are also always going to be a
complex set of archival applications that impose additional requirements on the
underlying set of preserved assets - for instance there will input conditioning
services that ensure that the input is well-formed and complete, there will be
approval work-flows, there will be compliance applications that verify that the
assets are managed according to defined practices, both generic and domain
specific. Itis important to understand that these services are an essential part
of an operational archive, but that they should be distinguished from the bit
preservation itself, i.e. they are modules that may not always be required, and
will vary from archive to archive and from domain to domain.

In addition there are other functions that are typically bundled with an archival
system, including searching, indexing, web-portals, conversion, and compute-
services. The decision to include those in a system is an operational decision,



and there are benefits to be derived from tight integration of the various
components, provided the essential and core function of the archive itself is not
compromised. Conversely, unless it is very clear what benefits are to be achieved
from such integration, it is strongly suggested that a bit-preservation layer be
selected and deployed with urgency, since losing the bits is irreversible, whereas
format migration and other functional preservation systems typically have lead
times of years to decades, and can be revisited as necessary.

The remainder of this document will discuss in more detail the functions of the
bit-preservation layer, the function preservation (often referred to as
migration) and typical applications.

Bit preservation

Bit-preservation is mostly self-explanatory ... but in practice it requires
immediate, unrelenting and meticulous care of the bits, without very much
regard to internal structure of the object. [The understanding being that the
internal structure, its preservation, migration and “curation” are specific to the
type of content, its use, its value to the organization and its stage in its life-cycle.
The bit preservation system expects well-formed submissions, will confirm the
integrity of the submission, and then manage the content according to fairly
generic policy obligations. Those obligations are handled internally by the
archive to ensure that content is never lost to hardware failure, media
degradation or obsolescence, operator error, software failures, malicious
interference or natural disasters. Moreover, the bit preservation system should
apply sound audit and tracking principles so that it can demonstrate that the
objects in its custody are the same, bit for bit, as the ones originally deposited,
plus any approved additions or changes, typically by the use of the signed audit
trails and cryptographic check-sums.

There are architectural design principles that can facilitate such reliability; and
they must be holistic design principles, accounting for technical measures,
awareness of the typical behaviours of organizations, the regulatory and
business environment and the typical behaviour of organizations towards
archives. [i.e. they are typically not the highest priority, until briefly they are,
and periodic neglect is to be expected]

The core design principles are all precautionary - i.e. work on the assumption

that the worst scenario will come to pass, and make the archive survive in spite

of that. Given that archives are all about very long-term preservation it is likely

that some of the eventualities will come to pass.

Such precautionary principles include

e % Require that the operation of the archive is totally transparent ... it does
exactly what it is asked to do.

& Assume that the software, and possibly even documentation will not be
available, so that the archive must be reconstructed just from backup media,



by inspection of the content.

& Assume that entire sites will be lost.

+ & Assume that there will be both incompetent and malicious operators.

e & Assume that the providers of your storage systems will go out of
business.

e & Assume that standards will change.

e & Assume that any encryption keys will be lost, whether they be held by
you or by an escrow service.

e & Assume that submissions will be made in error and will over-write
existing data.

How do these translate into design decisions? A good operating principle is to
work on the idea an average person should be able to dissect the archive storage
and reconstruct it - i.e. it should be evident how the archive structure “on-disk”
relates to perceived structure as seen from the outside. So, for instance, assume
that no encryption is best principle, and if it is required then make sure that
there are physically secured, plain text versions somewhere. If the archive is
organized as a set of folders then the on disk storage should reflect the same
structure with the same naming conventions.

As a checklist for sound assessment use the following checklist.

1. 1. Who ‘owns’ the archived objects? Is authorization role based?
The archive is an organizational function, so the idea of personal ownership
is at odds with that concept. A user should have a role, and it is the role to
which permissions and capabilities are assigned. The user per-se should be
identified in audit trails, for obvious reasons, but the otherwise there should
be no concept of user ownership or permissions.

1. 2. Can the archive issue notifications to external services?
As note above, the archive per-se should not be responsible for complex
applications. Itis nota programming or execution environment, itis not
possible nor prudent to support for all and any executable, and as a general
principle there should only be trusted and certified code inside ‘the vault’.
Therefore, in order to support complex requirements, workflows and
procedures the archive should be able issue notifications that can be
captured and responded to by external procedures that can then modify the
archive appropriately and with the standard authentication and
authorization.

1. 3. Isthe archive using encryption?
If the archive software is encrypting the content, that is bad. If it is
using encryption even for off-line storage, then that is really bad.
There is a distinct, almost inevitable likelihood that at some stage in
its life the archive will be decommissioned. And the keys will be lost.
So there will be no chance of reconstructing the archive. There is also
a distinct possibility that keys will be lost even with an operational
archive.

1. 4. Whatis the granularity of the access controls?



An Archive is intended to be long lived, so at any time there will be a variety
of assets, at various points in their life cycle, within the archive. It should
therefore be possible for access to be controlled at the level of directory
trees and individual objects.

1. 5. How are users authenticated?

Ideally users should be authenticated using the same mechanism as for
other applications in their organization. If the archive has its own
authentication system it will degenerate to having a common username and
password shared by ‘trusted’ users.

1. 6. Does the Archive really delete objects? Or just hide them? Does it support
versions?

Archive best practice dictates that objects should never really be deleted,
though for pragmatic reasons that may ultimately be necessary. In normal
operations deleting an object should never occur, it should probably be
separated from current objects. Likewise, overwriting should never occur
when an object is updated, so versions should be supported, and it is better
if the archive per-se supports them than that every application has to devise
an naming scheme.

1. 7. Does the archive support composite objects? Does the archive enforce
dependencies?
A composite object is an application convenience, and there is no single
view on how a object with distinct sub-parts should be presented. That
being said, almost any system is better than none at all, and any system
should provide explicit dependencies, wherein (a) updating of one or more
sub-parts causes or requires the creation of a new version of the composite
object and (b) attempt to delete or update a dependent object will be
refused and will trigger an event which has to be resolved .. probably using
the notification service to initiate an external work-flow.
1. 8. Does the archive store audit logs using the same protections as the
archived objects? Are the logs tamper-resistant?

One of the perennial issues around archives is provenance and authenticity,
with integrity often being part of the same discussion. It is advisable that
the audit logs be stored using the same storage infrastructure as the archive
itself. Thus provenance is subject to the same care as the objects
themselves. The audit trail should include the integrity checksums on
creation, and on periodic integrity checks.

1. 9. Does the archive permit user code inside the vault?

This should raise alarm bells - user code has no place inside the archive -
period. It's an archive - its prime raison d’étre is integrity. If it is allowing
user code execution then it is probably really something other than an
archive. Use of the mechanisms in note 2 are likely sufficient for archival
purposes. The one argument for internal code execution is that it allows you
to implement pre-triggers, i.e. you intercept the request and do something
different. This is contrary to one of the chief design tenets of archives -
which is that its operation should be transparent ... and anything that causes
something other than the submitted content to end up in the archive is not
advisable.

1. 10.The 100 year principle ... can the archive be rebuilt from just the content?
This assumes that there is no state held in the software itself, and that the



archive is completely represented by the storage. Moreover, the storage is
accessible in that an intelligent user to infer the structure of the content.
This precludes encryption, tricky storage allocation schemes, or any other
obfuscation.

1. 11.Can the archive survive loss of entire sites? Can it operate during and

recover from network partitioning?

If a site is lost, can the archive be reconstructed? Or better, can it heal itself?
If the archive loses network connectivity and effectively ends up as two or
more unconnected networks, to what extent can it continue operating in
each of those segments? When connection is re-established, will it restore
itself to a consistent state, or be able to detect and ask for resolution of
inconsistencies.

Functional Preservation.

Functional preservation tries to ensure the continued usefulness of archive
contents. In that sense it is the opposite of bit-preservation, in that it has to
recognize that eventually a different set of bits will be needed, because the
original binary object will no longer be compatible with extant software. For
example, the Lotus-123 spreadsheet from 1990 may still be around, but there is
unlikely to be any software to read it. Or, it may be that the utility of the
content has changed ... what was a research paper in 1960 may now be a source
of “historical’ terminology or observational data may now be used for
calibrating modern measurements.

Again, in contrast to bit-preservation, there is not the same unrelenting need for
operational attentiveness. It will become apparent that the functionality of a
class of objects is at risk long before that happens. There is lots of time to
assess, test and action a preservation process, which may include file conversion
(e.g. Lotus 123 to Excel), data extraction (e.g. to a text file), capture (e.g. print to
an ‘image’ format), or whatever the organization decides is an appropriate way
of preserving those aspects of the data objects that it considers valuable.
Moreover, provided that the bit-preservation has been done correctly, if it
should arise at some far future time that there is some valuable but
unanticipated aspect of the original that needs to be recovered, then in principle
it should be possible to create a converter de-novo.

Functional preservation is domain and application specific, and hence it is not
easy to be as clear and precise about what constitutes good practice, since it
depends on who is going to be using which objects for what purpose... Even so,
there are some precautionary principles that can be enumerated.

1. Where possible the content should self-contained, i.e. it should not rely on
external facilities, services or commonly distributed data, no matter how



currently ubiquitous... for example, interpretation should not rely on
external fonts, links to web-pages, or other potentially ephemeral data.

2. If there is need for visually exact preservation then a frozen format such as
PDF-A, or even TIFF/PNG should be used.

3. For image data a lossless format should be used, and in general any
compression should be lossless.

4. Obscure applications and formats should be avoided ... where possible
convert to a mainstream format. Consider including abstracted data
alongside the application specific format, and if possible include
documentation in the archive that describes the format in sufficient detail to
allow future deconstruction.

Archive Analytics Solutions, headquartered in the UK, is focused on use-based iRODS archiving
solutions. For more information about this white paper, or if you'd like to talk to us about your

archive, please contact us at info@archiveanalytics.com.




